Sequencing of Treatment in Indolent Lymphomas (CLL and FL)

Philip A. Thompson, MB, BS (Hons.) Assistant Professor, Department of Leukemia University of Texas MD Anderson Cancer Center

> Lisa Nodzon, PhD, ARNP, AOCNP® Department of Malignant Hematology Moffitt Cancer Center

Learning Objectives

- 1. Implement a plan for monitoring patients with CLL for 17p deletion at diagnosis and throughout the course of the disease
- 2. Interpret emerging data supporting combination therapies in CLL
- 3. Evaluate clinical trial data for novel targeted therapies in the management of newly diagnosed and relapsed/refractory follicular lymphoma

Disclosures

Dr. Thompson

- Research funding: AbbVie, Pharmacyclics, Amgen, Adaptive Biotechnologies
- Advisory board/honoraria: AbbVie, Pharmacyclics, Amgen, Genentech, Gilead

• Ms. Nodzon

 Consulting fees from and served on speakers bureaus: AbbVie, Genentech, Gilead

Part I: Treatment of CLL

Philip A. Thompson, MB, BS (Hons.) Assistant Professor, Department of Leukemia University of Texas MD Anderson Cancer Center

Novel Targets in CLL: Approved Therapies

- Second generation CD20 monoclonal antibodies (mAb)
 - Ofatumumab
 - Obinutuzumab
- Bruton's tyrosine kinase (BTK) inhibitor
 - Ibrutinib
- Phosphoinositide 3-delta kinase (PI3K) inhibitor
 - Idelalisib
 - Duvelisib
- B-cell lymphoma 2 (BCL2) inhibitor
 - Venetoclax

Targeting B-Cell Receptor Signaling in CLL

ten Hacken E et al. Clin Cancer Res 2014;20:548-556.

Targeting BCL2 in CLL

Roberts AW, et al. Clin Cancer Res 2017;23:4527-4533.

Current First-Line Treatment of CLL

- Chemoimmunotherapy: FCR, BR, chlorambucil + obinutuzumab or chlorambucil + ofatumumab
- Ibrutinib monotherapy

What Do We Want From an Ideal First-Line CLL Treatment?

Attribute	СІТ	lbrutinib monotherapy
High rate of complete remission, ideally with undetectable MRD	Subgroups, esp. with FCR	No
Limited duration, leading to durable remissions (and potentially "cure")	Yes	No
Tolerable and effective in all patients, including:1. Older patients and those with comorbidities2. Those with unfavorable genomic characteristics	No	Yes

Assessment of Fitness Critical in Treatment Choice

- CIRS score most frequently used; more important than chronologic age
- Patients with score <6 and adequate renal function (eGFR 70 or higher) generally considered "fit" for intensive regimens (e.g., FCR)

Chemoimmunotherapy Regimens in First-Line CLL

- FCR: Potent, high rates of CR and U-MRD¹; first regimen to demonstrate improved overall survival²
- Bendamustine and rituximab (BR): Similar PFS with less toxicity in the subgroup of fit patients aged >65³; however, inferior PFS for BR compared to FCR in patients ≤65 and no evidence of plateau on PFS curve
- Chlorambucil + obinutuzumab showed improved PFS and OS compared to chlorambucil alone; PFS approx. 2.5 years^{4,5}
- Chlorambucil + ofatumumab also improved PFS compared to chlorambucil alone; PFS approx. 22 months⁶

¹Keating. J Clin Oncol 2005; ²Hallek. Lancet 2010; ³Eichhorst. Lancet Oncol 2016; ⁴Goede N Engl J Med 2014; ⁶Goede EHA 2018. ⁶Hillmen. Lancet 2015.

CLL10: FCR Achieves Superior PFS But BR Is Better Tolerated

Eichhorst. Lancet Oncol 2016

•

IGHV-Mutated Patients Have Prolonged PFS After First-Line FCR

Patients With M-CLL and U-MRD Post-FCR Have Favorable PFS

Thompson et al, Leukemia 2018.

Subset With Highly Favorable Outcomes After FCR Is Relatively Small

- Note: Patients were only eligible for CLL8 if they had eGFR >70 and limited comorbidities (CIRS score of ≤6)
- Note median PFS for patients with UM-CLL receiving FCR have median survival of 3.5-4.5 years
- Del(17p) associated with median PFS ~1 year

Fischer et al, Blood 2016. GCLLSG CLL8 study; Rossi, et al. Blood 2015.

TP53 Mutation Negatively Impacts Survival After FCR, Even If Sub-Clonal

Rossi et al. Blood 2014;123:2139-2147.

Ibrutinib: Favorable PFS in R/R CLL With del(17p)

- Median PFS not reached at 2.5 years
- Compare this to ~1 year PFS seen in first-line patients with del(17p) or TP53 mutation treated with FCR
- Standard-of-care for del(17p) or *TP53*-mutated patients first line

Obrien. Lancet Oncol 2016.

Treatment Options for "Unfit" Patients

CLL11: Chlorambucil + Obinutuzumab

- Eligibility: CIRS >6 (median 8) or eGFR <70 (median 62)
- Median age 73

b

Goede. N Engl J Med 2014.

COMPLEMENT 1: Chlorambucil + Ofatumumab

- Eligibility: fludarabinebased treatment
 "inappropriate"
 (investigator judgement)
- Median age 69

RESONATE II: Ibrutinib vs. Chlorambucil

- Eligibility: patients ≥65 (median 73)
- 2-year PFS 89%; compare to median PFS of 29 months with G-Clb

Barr. Haematologica 2018.

A Suggested First-Line Treatment Algorithm

Key Ongoing Studies in "Fit" First-Line Treatment of CLL

Study	Age Range, Fitness	CIT Regimen	Comparator Regimen(s)
ECOG E1912	Fit; 18–70 yr; ECOG PS ≤2	FCR × 6	Ibr + R × 6, then Ibr
(NCT02048813)			
UK FLAIR study	Fit; 18–75 yr, ECOG PS ≤ 2	FCR × 6	Ibr + R × 6, then Ibr until U-MRD
			(max 6 y)
CLL13	Fit; ≥18 yr; CIRS score ≤ 6;	FCR × 6 cycles if	1. $V+R \times 6$ then $V \times 6$
(NCT02950051)	no individual organ score≥4	≤65, BR × 6	2. V+G x 6 then V × 6
		cycles if > 65 year	3. $Ibr+V+G \times 6$, then $Ibr + V \times 6$

Key Ongoing Studies in First-Line CLL "Unfit" Patients

Study	Age Range, Fitness	CIT Regimen	Comparator Regimen(s)
Elevate CLL TN	Unfit; ≥65 yr or CrCl 30–69	G-Clb × 6	1. Acalabrutinib
(NCT02475681)	or CIRS score >6		2. Acalabrutinib + $G \times 6$, then
			acalabrutinib
illuminate	≥ 65 yr or CrCl 30–69 or	G-Clb x 6	Ibr + G x 6 cycles then Ibr
(NCT02264574)	CIRS score >6		monotherapy
CLL14	Unfit; ≥ 18 yr; CIRS score > 6	G-Clb × 6	V+G × 6 then V × 6
(NCT02242942)			
UNITY	≥ 18 yr, ECOG 0-2	G-Clb x 6	TGR-1202 (umbralisib) + ublituximab
(NCT02612311)			

Potential First-Line Approvals

- Ibrutinib + rituximab
- Ibrutinib + obinutuzumab
- Acalabrutinib +/- obinutuzumab
- Venetoclax + ...
 - Rituximab
 - Obinutuzumab
 - Ibrutinib + obinutuzumab
- Umbralisib + ublituximab

Targeted Therapies in R/R CLL

- 4 approved agents in 3 classes:
 - BTK inhibitors: ibrutinib
 - PI3K inhibitors: idelalisib, duvelisib
 - Bcl-2 inhibitor: venetoclax
- No head-to-head data to guide which to use or which order to use them
- Data to show venetoclax is effective after failure of ibrutinib or idelalisib but no high-quality data to demonstrate the reverse

RESONATE I: R/R CLL

Byrd. N Engl J Med 2014

Long-Term Ibrutinib Phase II PFS Data

 R/R cohort median PFS 51 months (43 months for UM-CLL)

Obrien. Blood 2018.

Idelalisib + Rituximab in R/R CLL

- Durable responses in R/R CLL
- Toxicity management more complex than Bcl-2 inhibitors and BTK inhibitors

Duvelisib vs. Ofatumumab (DUO)

Venetoclax in R/R Patients With del(17p)

Stilgenbauer et al. Lancet Oncol 2016

Venetoclax + Rituximab in First Relapse

- U-MRD in PB 62%; not affected by pretreatment genomic characteristics
- 90% with U-MRD in PB had U-MRD in BM
- Now approved for R/R CLL regardless of del(17p)

A Progression-free Survival 100-Progression-free Survival (% of Patients) 90-Venetoclax-rituximab group 80-70-Median, not reached 60-50-40-Bendamustine-rituximab group Median, 17 mo 30-20-Hazard ratio, 0.17 (95% CI, 0.11-0.25) 10-P<0.001 30 33 36 0 3 9 12 15 18 21 24 27 39 Months since Randomization No. at Risk Venetoclax-rituximab group 190 185 157 115 76 3 194 179 176 173 33 14 5 35 12 102 81 57 3 1 Bendamustine-rituximab group 195 177 163 141 127

Seymour. N Engl J Med 2018.

Venetoclax Post-Ibrutinib/Idelalisib Failure

 Median PFS 2 years in very highrisk patient group

Jones J, et al. Lancet Oncol 2018.

How to Sequence Therapies in Relapsed CLL

Which Treatment to Give at Relapse

- No randomized data
- Nonrandomized data suggest superior PFS for ibrutinib compared to idelalisib
- No comparative data for ibrutinib vs. venetoclax or venetoclax + R

Mato A, et al. Ann Oncol 2017;28(5):1050-1056.

Approach to Treatment of R/R CLL

- BTKi and BCL-2 inhibitor naive → either ibrutinib or venetoclax +/rituximab; no comparative data
- BTKi intolerant/refractory → venetoclax +/- rituximab; if BTKi intolerant, idelalisib + R or duvelisib could also be tried
- Venetoclax-refractory \rightarrow limited data; trial of ibrutinib
- Double-refractory \rightarrow clinical trials (e.g., CAR-T)
- Patients who are refractory to BTKi or venetoclax should be considered for allogeneic stem cell transplant if otherwise eligible

Part II: Recognition and Management of Toxicities From Targeted Agents in CLL

Lisa Nodzon, PhD, ARNP, AOCNP Department of Malignant Hematology Moffitt Cancer Center

Ofatumumab

- First fully humanized anti-CD20 mAb¹
- FDA approved indications:
 - 2009: refractory to fludarabine and alemtuzumab²
 - 2014 COMPLEMENT 1: with chlorambucil in treatment naive³
 - 2016 COMPLEMENT 2: with fludarabine and cyclophosphamide⁴
 - 2016 PROLONG: maintenance therapy after two lines of therapy⁵
- Black box warning¹
 - Hepatitis B virus reactivation
 - Progressive multifocal leukoencephalopathy

1. Arzerra® Pl 2018; 2. Wierda WG, et al. J Clin Oncol 2010;28(10):1749-1755; 3. Hillmen P, et al. Blood 2013;122 (21):528; 4. Robak T, et al. Leuk Lymphoma 2017;58(5):1084-1093; 5. van Oers MH, et al. Lancet Oncol 2015;16:1370-1379.

Obinutuzumab

- Humanized anti-CD20 mAb with greater ADCC than rituximab¹
- FDA approved in 2013 for treatment naive CLL in combination with chlorambucil²
- Black box warning³
 - Hepatitis B virus reactivation
 - Progressive multifocal leukoencephalopathy

1. Mossner E, et al. Blood 2010;115(22):4393-4402; 2. Goede V, et al. N Engl J Med 2014;370:1101-1110; 3. Gazyva® PI 2018.

Anti-CD20 mAb-Related Toxicities

- Tumor lysis syndrome
- Infusion related reactions
 - Grade 3 \geq : obinutuzumab 21-31%¹ and ofatumumab 10%²

 - Hypotension, rigors, pyrexia, hypoxia, urticaria, bronchospasms, etc.
 - Premedication protocol per institution: acetaminophen, steroid and antihistamine
 - Frequently monitor patients with preexisting pulmonary/cardiac conditions
- Neutropenia: grade $3 \ge 26\%$
- Bacterial, fungal, and reactivated viral infections (e.g., CMV, HSV, VZV)

Oral Targeted Therapies in CLL

- Ibrutinib inhibits BTK¹
 - RESONATE (2014) and RESONATE-2 (2016): broad approval regardless of Del 17p
- Idelalisib inhibits PI3K delta kinase²
 - FDA approved in 2014 for R/R CLL in combination with rituximab or SLL after 2 prior therapies
- Duvelisib is a dual inhibitor of PI3K delta and gamma kinases³
 - FDA approved in 2018 for R/R CLL after 2 prior therapies
- Venetoclax inhibits BCL-2⁴
 - FDA approved in 2016 for R/R CLL harboring Del 17p and 2018 for R/R CLL with rituximab

1. Imbruvica® PI 2018; 2. Idelalisib® PI 2018; 3. Copiktra ® PI 2018; 4. Venclexta™ PI 2018.

Ibrutinib

- Binds covalently to BTK cysteine 481 with an initial half-life of 4-6 hours and 24-hour target inhibition
- Promotes apoptosis by inhibiting B-cell proliferation, migration and adhesion
 - Rapid reduction in lymphadenopathy
 - Redistribution lymphocytosis (class effect)
- Testing for BTK and PLCγ2 mutations in suspected progression

Imbruvica® PI 2018.

RESONATE and RESONATE-2 AEs of Interest in the Integrated Analysis

- Median 29 mos. of ibrutinib with 47 mos. follow-up
- 29% discontinued for AEs and 12% dose reductions, > first year
- Notable interest: atrial fibrillation, bleeding, hypertension, and infection (30%)

Integrated Analysis (N=330)	Diarrhea	Arthralgia	нт	Rash ^a	Bleeding ^a	Fatigue	AFib
AEs of interest, n (%)	174 (53)	74 (22)	68 (21)	119 (36)	182 (55)	120 (36)	36 (11)
Grade 1	116 (35)	45 (14)	11 (3)	72 (22)	130 (39)	66 (20)	5 (2)
Grade 2	43 (13)	22 (7)	33 (10)	35 (11)	35 (11)	44 (13)	15 (5)
Grade 3	15 (5)	7 (2)	24 (7)	12 (4)	14 (4)	10 (3)	16 (5)
Grade 4	0	0	0	0	2 (1)	0	0
Grade 5	0	0	0	0	1 (<1)	0	0
Dose reductions due to AEs of interest, n/N (%)	5/174 (3)	3/74 (4)	0	3/119 (3)	4/182 (2)	2/120 (2)	4/36 (11)
Discontinuation due to AEs of interest, n (%)	2/174 (1)	0	1/68 (1)	2/119 (2)	6/182 (3)	1/120 (1)	3/36 (8)
^a Pooled terms.							

Coutre S, et al. Blood 2016;128(22):4383.

Ibrutinib-Associated Bleeding

- BTK and TEC kinases play key roles in glycoprotein VI signaling necessary for collagen-mediated platelet aggregation
- Impact partially reversed after 2.5 days of withholding Ibrutinib and reversible within 1 week of discontinuation

Shatzel JJ, et al. J Thromb Haemost 2017;15:835-847.

Ibrutinib: Atrial Fibrillation

- Activation of PI3K-Akt pathway is a critical regulator of atrial rhythm under stress¹
 - Regulated by BTK and TEC kinases
- Standard rate/rhythm management
 - Avoid CYP3A4 inhibitors
 - Referral to cardio-oncologist
- CHA2DS2-VASc system based on risk: score of ≥2 recommend direct oral anticoagulant²

1. McMullen JR, et al. Blood 2014;124(25):3829-3830; 2. Shatzel JJ, et al. J Thromb Haemost 2017;15:835-847.

Ibrutinib-Associated Bleeding: Patient Management

- Avoid vitamin K antagonists due to limited safety data¹
- Caution against concomitant NSAIDs, fish oils, vitamin E, and aspirin-containing products
- Direct oral anticoagulants may increase risk
 - Assess risks and benefits individually when making treatment decisions (e.g., CHA2DS2-VAS c and HAS-BLED)
 - Caution with CYP3A4 interacting therapy
- Hold pre/post surgical procedures for 3 days (minor) and 7 days (major)
- Transfuse platelets for serious bleeding events

1. Shatzel JJ, et al. J Thromb Haemost 2017;15:835-847.

Ibrutinib: Hypertension

- Mechanism under investigation
- Incidence of grade ≥3 hypertension increased over time to 26% after 46 months¹
- Standard management
 - Avoid CYP3A4 inhibitors and inducers
- Monitor blood pressure regularly as hypertension may be cocausal for the development of atrial fibrillation and cerebral hemorrhage

1. O'Brien SM, et al. Blood 2016;128:233.

Idelalisib

- Inhibitor of PI3K delta kinase isoform unique to leukocytes¹
- Inhibition of T regulatory cells increases risk for immunemediated toxicities²
 - Not indicated for treatment naive CLL/SLL
- Black box warning: fatal and serious toxicities (hepatic, diarrhea, colitis, pneumonitis, infections and intestinal perforation)³

1. Cheah CY, et al. Blood 2016;128(3):331-336; 2. Lampson BL, et al. Blood 2016;128(2):195-203; 3. Zydelig® PI 2018.

Idelalisib Study 116: Select AEs in ≥20%

SAFETY		Group; any Grade/Grade ≥3, %			
Category	Term	IDELA+R	PBO+R		
Selected AEs	Diarrhea/Colitis	21/5	15/0		
	Bleeding	14/1	19/1		
	Pneumonia	10/8	13/9		
	Rash	10/1	5/0		
	Pneumonitis	6/4	1/1		
Selected lab values, abnormal	ALT/AST elevation	40/8	20/1		
	Neutropenia	60/37	51/27		
	Anemia	29/7	32/17		
	Thrombocytopenia	19/11	32/18		

Sharman, JP, et al. Blood 2014;124(21):330.

Idelalisib: Diarrhea

- Exclude infectious etiology
- Early onset: median time 8 weeks
 - Typically grade 1-2
 - Supportive care and anti-motility agents
- Late onset: median time 8 months
 - Typically grade ≥ 3
 - Characteristic of immune-mediated colitis (assess for CMV-colonoscopy/biopsy)
 - Drug holding and corticosteroids (enteric, PO or IV)
 - Duration based on clinical response
 - Mean time to resolution with budesonide 9mg was 12.1 days versus 1 month for drug holding
 - 67% rechallenged and 58% without recurrence

Coutre S, et al. Leuk Lymphoma 2015;56(10):2779-2786

Idelalisib: Pneumonitis vs. Pneumonia

Pneumonitis

- Rare, 4%¹
- Pulmonary symptoms (cough, dyspnea, hypoxia, interstitial infiltrates on a radiologic exam, or >5% decline in oxygen saturation)
 - Hold Idelalisib
 - Bronchoscopy with BAL?
- Time to onset < 1 to 15 months¹
- Corticosteroids and permanently discontinue^{1,2}

Pneumonia

- 8% grade 3¹
- Acute inflammation of lung caused by infection
- Bronchoscopy with BAL?
- Pneumocystis jirovecii pneumonia
 - Rare, 3%¹
 - Occurred in patients not receiving prophylaxis
 - NCCN recommends prophylaxis³

1. Coutre S, et al. Leuk Lymphoma 2015;56(10):2779-2786; 2. Zydelig® PI 2018; 3. NCCN. CLL/SLL Guidelines. Version 5.2018.

Idelalisib: Hepatotoxicity

- Typically occurs <12 weeks of initiation and reversible with dose interruption¹
- 74% of patients requiring treatment interruptions successfully resumed without recurrence²
- Avoidance of hepatotoxic agents
- Monitor for viral reactivation (HSV, CMV, Hep)¹⁻³

1. Coutre S, et al. Leuk Lymphoma 2015;56(10):2779-2786; 2. Zydelig® PI 2018; 3. NCCN. CLL/SLL Guidelines. Version 5.2018.

Duvelisib

- Dual inhibitor of PI3K delta and gamma kinases^{1,2}
- Black box warnings: fatal and serious toxicities (infections, diarrhea or colitis, cutaneous reactions and pneumonitis)²

1. Flinn I, et al. Blood 2018; doi: 10.1182/blood-2018-05-850461; 2. Copiktra ® PI 2018.

DUO Study: Select AEs

- Median exposure: duvelisib 50 wks and ofa 12 doses (6 mos)
- Severe opportunistic infections (6%): bronchopulmonary aspergillosis (n=4), fungal (n=2), PJP (n=3), and CMV colitis (n=1)

Select AEs ≥ 10%		All Grad	des (%)	≥ Grade 3 (%)	
		Duv (N=158)	Ofa (N=155)	Duv (N=158)	Ofa (N=155)
Hematologic	Neutropenia	33	21	★ 30	17
	Anemia	23	10	13	5
	Thrombocytopenia	15	6	8	2
Nonhematologic	Diarrhea	51	12	★ 15	1
	Colitis	13	1	† 12	1
	Pneumonia	18	6	+ 14	1
	Rash	10	12	2	1
	Pneumonitis	-	-	3	-
	URTI	16	8	0	0

Flinn I, et al. Blood 2018; doi: 10.1182/blood-2018-05-850461.

Venetoclax

- Selective BCL-2 inhibitor that directly induces apoptosis independent of TP53 pathway^{1,2}
- FDA approved indications³:
 - 2016: monotherapy for R/R CLL with Del 17p⁴
 - 2018 MURANO trial: +rituximab for R/R CLL⁵
- Concomitant use with strong CYP3A inhibitors during ramp-up contraindicated³

1. Souers AJ, et al. Nat Med 2013;19:202-208; 2. Anderson MA, et al. Blood 2013;122(suppl; abstr):1304; 3. Venclexta™ PI 2018; 4. Stilgenbauer S, et al. Lancet Oncol 2016; 17(6):768-778; 5. Seymour JF, et al. N Eng J Med 2018; 378:1107-1120.

Venetoclax: AEs of Special Interest

- AIHA 7% as monotherapy¹
- Myelosuppression: managed with dose interruption/reduction
 - Grade \geq 3 neutropenia 64% (+rituximab)¹ and 63% (monotherapy);² consider G-CSF and/or antibiotics
 - Thrombocytopenia 29% (any grade): monotherapy
- GI: Any grade, diarrhea 43% and nausea 42% in both trials^{1,2}
- Infection^{1,2}
 - Upper respiratory infection most common in ≥ 20% across both trials
 - Pneumonia 9% (grade 3) across both trials
- Grade \geq 3 laboratory tumor lysis syndrome: 3% (+rituximab)¹ and 6% (monotherapy)²

1. Stilgenbauer S, et al. Lancet Oncol 2016; 17(6):768-778; 2. Seymour JF, et al. N Engl J Med 2018; 378:1107-1120.

Measures to Mitigate Tumor Lysis Risk

20 mg

week

- Disease burden + anti-hyperuricemic agent + hydration
- Low-risk: nodal mass <5 cm AND ALC ≤25,000
 - Outpatient dosing at all levels

6-8 hours and 24 hours

- Post dose labs: 6-8 and 24 hours for first dose of 20 mg and 50 mg
- Medium risk: nodal mass 5 to <10 cm OR ALC ≥ 25,000
 - Outpatient. Consider hospitalization if CrCl <80 mL/min.
 - Post dose labs: 6-8 and 24 hours for first dose of 20 mg and 50 mg

50 mg then outpatient for ramp-up doses with post dose labs at

- High risk: nodal mass ≥10 cm OR ALC ≥25,000 AND any node ≥5 cm
 - Hospitalized for first dose of 20 mg and 50 mg
 Post dose labs: 4, 8, 12, and 24 hours for first dose of 20 mg and

400 mg

Venclexta™ PI 2018

Part II: Summary

- Infusion-related reactions are manageable events inherent to ofatumumab and obinutuzumab
- Patients receiving ibrutinib should be counseled and monitored for bleeding and cardiac-related events. Consider referral to cardio-oncologist
- Counsel patients receiving Idelalisib regarding diarrhea, infections, and hepatic toxicities
- Venetoclax has a favorable risk-benefit profile. Patient profiling required to mitigate risk of tumor lysis
- Concomitant medication monitoring with oral oncolytics

Part III: Treatment of FL

Philip A. Thompson, MB, BS (Hons.) Assistant Professor, Department of Leukemia University of Texas MD Anderson Cancer Center

Part III: Initial Treatment of Follicular Lymphoma

Watch and Wait vs. Immediate Treatment for Stage III/IV FL

- No survival benefit for early treatment in asymptomatic patients¹⁻³
- GELF criteria for high disease burden suggesting need for treatment:
 - 1. Any nodal or extranodal tumor mass >7 cm in diameter
 - 2. Involvement of at least 3 nodal sites, each with diameter >3 cm
 - 3. Presence of systemic or B symptoms
 - 4. Splenic enlargement with inferior margin below the umbilical line
 - 5. Compression syndrome (ureteral, orbital, gastrointestinal)
 - 6. Pleural or peritoneal serous effusion (irrespective of cell content)
 - 7. Leukemic phase (>5.0 x 10⁹/L circulating malignant cells)
 - 8. Cytopenia (granulocyte count < 1.0x10⁹/L and/or platelets <100x10⁹/L)

1. Brice PJ. Clin Oncol 1997; 2. Ardeshna KM. Lancet 2003; 3. Solal-Celigny. J Clin Oncol 2012.

Choice of CIT

- STiL study¹ (BR vs R-CHOP in indolent and mantle cell lymphoma) showed:
 - 1. Superior PFS for BR vs R-CHOP, including when only FL analyzed
 - 2. BR associated with lower grade 3/4 neutropenia, infection rates, peripheral neuropathy and no alopecia
- Value of maintenance R more uncertain after BR therapy
- Additionally, post-hoc analysis of GALLIUM study showed higher rates of fatal AEs in older adults (>70) receiving bendamustine (in both R- and G-containing arms)
- Either remains a reasonable choice; R-CVP or R monotherapy for very elderly/unfit patients

1. Rummel, Lancet Oncol 2013.

R vs. G: GALLIUM STUDY

Obinutuzumab Improves PFS Compared With Rituximab

Hiddeman, et al. J Clin Oncol 2018.

G Superior PFS to R in Both Bendamustine and CHOP Groups

- Obinutuzumab arm associated with higher:
 - 1. IRRs (59 vs 49%)
 - 2. Febrile neutropenia per cycle (6.9 vs. 4.9%)
 - 3. Cumulative incidence of grade 3-4 infections (20 vs. 15.6%).
- Bendamustine arm associated with highest # fatal AEs; CHOP with highest # grade 3-5 AEs (esp. cytopenias)

Hiddeman, et al. J Clin Oncol 2018.

GALLIUM: Risk of a POD24 Event by Treatment Arm

 POD24 an important milestone as patients who progress within 2 years have very poor outcomes

Factors Influencing Choice of Monoclonal Antibody

Rituximab

- Less grade ≥3 toxicity (infections/IRRs)
- Lower cost
- No OS advantage
- Can use G if rituximab refractory

Obinutuzumab

- More potent, more MRD negative patients
- Superior PFS
- 5% absolute reduction in POD24 events

PRIMA Study: PFS

- 2-year rituximab maintenance post-CIT (R-CHOP, R-CVP or R-FCM)
- No OS benefit

Seymour J, et al. Blood 2013;122:509.

R Maintenance May Be Associated With Reduced Risk of Transformation

- Multi-center, retrospective analysis
- 2.6% absolute risk reduction for transformation at 10 years

10-year cumulative risk of histologic transformation

Federico, et al. Lancet Haem 2018.

Factors Influencing Decision to Give Maintenance

- Chemotherapy backbone: PRIMA study used R maintenance after R-CHOP or R-CVP; unclear if beneficial after BR
- Tolerability of induction
- Reduced risk of histologic transformation
- NB. No survival benefit from R maintenance

Approach to Relapsed/Refractory Follicular Lymphoma

Early Relapse Within 2 Years of R-CHOP Is Associated With Poor Outcome

Time to Relapse	2-Year OS (95% CI), %	5-Year OS (95% CI), %	
Reference (no early POD) n = 420	97 (94.6- 98.1)	90 (86.2- 92.4)	
Early progression (early POD) n = 110	68 (58.2- 76.3)	50 (39.4- 59.2)	

Casulo C, et al. J Clin Oncol. 2015;33:2516-2522.

Approach to First Relapse of Follicular Lymphoma

Phase III GADOLIN Study: Obinutuzumab + Bendamustine vs. Bendamustine

Sehn L, et al. Lancet Oncol. 2016;17(8):1081-1093.

GADOLIN: Obinutuzumab Improves Progression-Free Survival

Sehn L, et al. Lancet Oncol. 2016;17(8):1081-1093.

Phase II 101-09: Idelalisib Monotherapy in Refractory iNHL

Gopal AK, et al. N Engl J Med. 2014;370:1008-1018.

Tumor Response

 Follicular lymphoma (N=72): ORR 56%, 42% PR, and 14% CR

Gopal AK, et al. N Engl J Med. 2014;370:1008-1018.

Idelalisib: PFS

1. Gopal AK, et al. N Engl J Med. 2014;370:1008-1018; 2. Salles G, et al. Haematologica 2017;156-159.

Phase II CHRONOS-1: Copanlisib in Relapsed/Refractory Follicular Lymphoma

Inhibitor of PI3K alpha and delta isoforms

Phase II CHRONOS-1: PFS

Dreyling, M, et al J Clin Oncol 2017;35:3898-3905.

Phase II DYNAMO Study: Duvelisib in Relapsed/Refractory iNHL

Inhibitor of PI3K delta and gamma isoforms

Inclusion Criteria:

- 3 iNHL disease subtypes
 - follicular lymphoma (FL)
 - small lymphocytic lymphoma (SLL)
 - marginal zone lymphoma (MZL)
- Double refractory to rituximab (monotherapy or in
- combination) and to chemotherapy or radioimmunotherapy
- No eligibility restrictions for cytopenias

Flinn IW, et al. Blood 2016;128:1218.

Study Endpoints

- Primary: ORR
- Secondary:
 - Safety
 - DOR
 - PFS
 - OS

Phase II DYNAMO Study: Duvelisib in Relapsed/Refractory iNHL

	FL N=83	SLL N=28	MZL N=18	Overall N=129
ORR, %	41	68	33	46
DoR (months), median	9.2	9.9	NE	9.9
PFS (months), median	8.3	11.3	NE	8.4
TTR (months), median	1.9	1.9	3.6	1.9
OS (months), median	18.4	NE	NE	18.4

Flinn IW, et al. Blood 2016;128:1218.

Part III: Summary

- Approximately 20% of FL patients relapse within two years and are refractory to therapy resulting in 5-year OS <50%
- Patients refractory to or relapsed with two years after rituximab and alkylating agents have limited treatment options and should be enrolled in clinical trials or treated with novel agents
- Limited efficacy of BCL-2 inhibitors or BTK inhibitors (unlike CLL). Novel therapies (e.g., CAR-T) urgently needed

Part IV: Recognition and Management of AEs of Novel Agents in FL

Copanlisib: AEs of Special Interest

	Grade, No. (%)			
Adverse Event	All	3	4	5
Any treatment-emergent adverse event	140 (99)	75 (53)	38 (27)	6 (4)
Ionhematologic toxicities				
Hyperglycemia	71 (50)	48 (34)	10 (7)	0
Diarrhea	48 (34)	7 (5)	0	0
Fatigue	43 (30)	3 (2)	0	0
Hypertension	43 (30)	34 (24)	0	0
Fever	36 (25)	6 (4)	0	0
Nausea	33 (23)	1 (1)	0	0
Lung infection	30 (21)	18 (13)	3 (2)	2 (1)
Oral mucositis	28 (20)	4 (3)	0	0
Upper respiratory infection	26 (18)	4 (3)	0	0
Cough	23 (16)	0	0	0
Maculopapular rash	18 (13)	1 (1)	0	0
Constipation	17 (12)	0	0	0
Bronchial infection	16 (11)	2 (1)	0	0
Flu-like symptoms	16 (11)	1 (1)	0	0
Anorexia	15 (11)	0	0	0
Skin infection	15 (11)	1 (1)	0	0
Hematologic toxicities				
Decreased neutrophil count	42 (30)	11 (8)	23 (16)	0
Decreased platelet count	29 (20)	9 (6)	1 (1)	0
Anemia	22 (15)	6 (4)	0	0
Adverse events of special interest				
Pneumonitis (noninfectious)	11 (8)	2 (1)	0	0
Colitis	1 (1)	0	1 (1)	0
_aboratory toxicities				
Elevated AST*	39 (28)	1 (1)	1 (1)	0
Elevated ALT*	32 (23)	1 (1)	1 (1)	0

- Hyperglycemia: 50%; grade ≥3 41%
- Hypertension: 30%; grade $\ge 324\%$
- Elevated AST: 28%
- Elevated ALT: 23%
- Other grade ≥3 events: Decreased ANC 30% Lung infection 21%; grade ≥3 13%

Acknowledgements

• Dr. Chan Cheah – follicular lymphoma insights and slides

PAThompson2@mdanderson.org Lisa.Nodzon@moffitt.org

This has been a SMARTIE presentation. SMARTIE participants, you can now go to smartie2018.com or visit the SMARTIE booth to answer the post-session questions for this presentation.

If you would like more information about this program, please ask a conference staff member or visit the SMARTIE booth.

