

Clinical Advances and Case Studies in Immune Checkpoint Inhibitors in Oncology

Head and Neck Cancer

Program Chairs

Brianna Hoffner
MSN, ANP-BC, AOCNP®
University of Colorado
Cancer Center

Laura J. Zitella
MS, RN, ACNP-BC, AOCN®
Stanford Health Care

Faculty

Whitney Lewis
PharmD, BCOP
The University of Texas MD
Anderson Cancer Center

Faculty Financial Disclosures

- Ms. Hoffner has received consulting fees/honoraria from Abbott, Array BioPharma, and Merck.
- Ms. Zitella has served on the advisory board for Array Biopharma and has equity interests/stock options in Kite Pharma.
- Dr. Lewis has nothing to disclose.

Planning Committee Financial Disclosures

- Moshe C. Ornstein, MD, MA, Cleveland Clinic Taussig Cancer Institute (Reviewer) has served as a consultant for Pfizer and Eisai.
- Dorothy Caputo, MA, BSN, RN (Lead Nurse Planner) has nothing to disclose.
- Annenberg Center for Health Sciences at Eisenhower
 - John Bayliss, VP, Business Development, spouse is an employee of Amgen, Inc.; Charles Willis, Director, Continuing Education, consults for Pfizer Inc.; all other staff at the Annenberg Center for Health Sciences at Eisenhower have no relevant commercial relationships to disclose.
- Alana Brody, Lynn Rubin, and Patti McLafferty (Harborside Medical Education) have nothing to disclose.
- Sandy Leatherman, Annamarie Luccarelli, and Jessica Tamasi (APSHO) have nothing to disclose.
- Claudine Kiffer and Annie Yueh (Harborside) have nothing to disclose.

This activity is supported by educational grants provided by AstraZeneca and Bristol-Myers Squibb.

Learning Objectives

- Differentiate between early and late adverse effects associated with immunotherapeutic agents.
- Recognize the differences between immunotherapeutic agents and chemotherapeutic agents: mechanisms of action, adverse effects, and toxicity management.
- Summarize data on currently available immunotherapeutic agents as they relate to durable treatment responses.
- Explain the utility of biomarker testing in selecting patients for immunotherapy and in predicting clinical outcomes.

Goals

- Summarize data on currently available immunotherapeutic agents for recurrent/metastatic head and neck squamous cell carcinoma.
- Identify appropriate management of immune-related hypophysitis

Head and Neck Squamous Cell Cancer (HNSCC)

- Approximately 3% of all cancers in the United States
- 1.6% of all cancer deaths
- 49,670 estimated new cases in 2017

Head and Neck Squamous Cell Cancer (cont.)

Three common clinical presentations

- Stage I/II
- Stage III/IV (M₀)
 - Resectable
 - Unresectable
 - Organ preservation
- Stage IV (M₁), recurrent

Survival for recurrent or metastatic HNSCC is dismal

- 5-year survival rate for metastatic disease: 19%
- Patients with recurrent or metastatic HNSCC who progress after platinumbased chemotherapy: survival of < 6 months
- Incidence rising approximately 0.6% each year for the past 10 years

Standard of Care for 1st line R/M HNSCC: EXTREME: Platinum/5-FU/Cetuximab

- Platinum/5-FU/cetuximab x 6 cycles, followed by cetuximab maintenance until PD
 - Cisplatin at 100 mg/m² IV or carboplatin AUC 5 on day 1
 - 5-FU at 1,000 mg/m²/day x 4 days q3wk
 - Cetuximab 400 mg/m² (initial dose)IV followed by 250 mg/m² weekly administered ≥ 1 h prior to chemotherapy
- Median overall survival: 10 months

5-FU = 5-fluorouracil; HNSCC = head and neck squamous cell carcinoma; PD = progressive disease; R/M = recurrent/metastatic; AUC = area under the curve.

Immune System Dysfunction Plays A Role In HNSCC

- Epidermal growth factor receptor (EGFR) is overexpressed in 80%–90% of HNSCC
 - Associated with tumor cell proliferation and worse survival outcomes
 - Cetuximab, an anti-EGFR monoclonal antibody causes tumor lysis via antibodydependent cellular cytotoxicity and interacts with antigen-presenting cells to promote the opsonization of tumor for phagocytosis and antigen processing which elicits a tumor antigen-specific cytotoxic CD8+ T-cell response
- PD-L1 is overexpressed in > 50%–60% of HNSCC
 - More common in human papilloma virus (HPV)—positive than HPV-negative tumors
- Tumor-infiltrating lymphocytes and CD4 T helper 1 cells activate interferonmediated signaling which induces expression of PD-L1 on cells in the tumor environment, which protects tumor cells from tumor-directed immunity

HNSCC = head and neck squamous cell carcinoma

Approved Immunotherapy

- Pembrolizumab granted accelerated approval 8/5/2016 for HNSCC after progression beyond platinum-containing chemotherapy
 - Based on data from KEYNOTE-012
 - Confirmation study KEYNOTE-040 did not meet primary endpoint (OS)
- FDA approved nivolumab 11/10/16 for the same indication as pembrolizumab
 - Based on data from CheckMate-141

HNSCC = head and neck squamous cell carcinoma; FDA = U.S. Food and Drug Administration.

KEYNOTE-012: Phase 1 Trial Pembrolizumab for R/M HNSCC

- Initial cohort: PD-L1+ > 1%
- Expansion cohort: any PD-L1 status
- Treated with pembrolizumab 10 mg/kg every 2 weeks
- 18% overall response in all patients
 - 32% overall response in HPV+ patients
 - 14% overall response in HPV- patients
- Response correlated with PD-L1 expression
 - 22% in PD-L1 positive
 - 4% PD-L1 negative

HNSCC = head and neck squamous cell carcinoma; R/M = recurrent/metastatic

KEYNOTE-012: HPV-Positive Tumors Associated With Improved Overall Survival

Seiwert TY, et al. Lancet Oncol 2016;17:956-65

KEYNOTE-012:

Higher Response Rate With Greater PD-L1 Expression

PD-L1 Status	Tumor and Immune Cells			Tumor Cells Only		
FD-L1 Status	Nonresponders, No.	Responders, No.	Response, % (95% CI)	Nonresponders, No.	Responders, No.	Response, % (95% CI)
Negative (< 1%)	24	1	4 (0.1 to 20)	36	7	16 (7 to 31)
Positive (≥ 1%)	84	23	22 (14 to 31)	72	17	19 (12 to 29)

KEYNOTE-040: Phase III Trial Pembrolizumab vs. SOC Chemo for Second-Line R/M HNSCC

R/M HNSCC after platinumbased therapy (N = 495) **Pembrolizumab** 200 mg IV q3w (n = 247)

Investigator's choice (SOC): (n = 248)

- Methotrexate 40 mg/m² weekly (in absence of toxicity could increase to 60 mg/m²)
- Docetaxel 75 mg/m² q3w
- Cetuximab loading dose of 400 mg/m² followed by 250 mg/m² weekly

Response						
	mOS	CR	PR	SD	mDOR	
Pembro (n=247)	8.4 mo (NS)	9%	32%	31%	18.4 mo	
SOC chemo (n=248)	7.1 mo	1%	25%	45%	5 mo	

Did not meet endpoint for overall OS. However, subset of patients with high PD-L1 expression did have significantly improved OS with pembrolizumab.

CR = complete response; HNSCC = head and neck squamous cell carcinoma; mDOR = median duration of response; mOS = median overall survival; NS = not significant; PD = progressive disease; PR= partial response; R/M = recurrent/metastatic; SD = stable disease; SOC = standard of care.

Regional Lectures

KEYNOTE-040: Pembrolizumab Significantly Improved Survival in Patients With High PD-L1 Expression

	PD-L1 ≥ 1	%	PD-L1 > 50%		
	Pembrolizumab	SOC Chemo	Pembrolizumab	SOC Chemo	
Median Overall Survival	8.7 mo	7.1 mo	11.6 mo	7.9 mo	

SOC = standard of care.

CheckMate 141: Phase III Nivolumab Vs. Chemotherapy for Second-Line R/M HNSCC

R/M HNSCC after platinumbased therapy (N = 361) Nivolumab 3 mg/kg IV Q2W (n = 240)

Investigator's choice (SOC): (n = 121)

- Methotrexate 40 mg/m² QW
- Docetaxel 30 mg/m² QW
- Cetuximab loading dose of 400 mg/m² followed by 250 mg/m² weekly

	ORR	18-mo OS	mOS	mDOR	Grade 3–4 AE
Nivolumab (n = 240)	13%	22%	7.7 mo	10 mo	13%
SOC chemo (n = 121)	6%	8%	5.1 mo	4 mo	35%

AE= adverse event; HNSCC= head and neck squamous cell carcinoma; mDOR=median duration of response; mOS=median overall survival; ORR= objective response rate; OS= overall survival; R/M= recurrent/metastatic; SOC=Standard of care

CheckMate 141

Median OS: 7.5 months in nivolumab group vs. 5.1 months in SOC group 1-year OS: nearly doubled in nivolumab group---36% versus 17% (SOC)

CheckMate 141--Sub-Analysis of Patients that received Nivolumab Vs Chemo for 1st Line R/M HNSCC

Response						
mOS 1-year OS ORR						
Nivolumab (n = 52)	7.7 mo	40%	19%			
SOC chemo (n = 26)	3.3 mo	15%	12%			

HNSCC = head and neck squamous cell carcinoma;; mOS = median overall survival; ORR= objective response rate; OS= overall survival; R/M= recurrent/metastatic; SOC = standard of care

HAWK: Phase II Trial Durvalumab for Second-Line R/M HNSCC

- Immunotherapy-naive adult patients with high PD-L1 expression, who had progression or recurrence during or after 1 platinum-based regimen for R/M HNSCC (n = 112)
- Durvalumab at 10 mg/kg IV for up to 12 months or until PD, the initiation of another anticancer therapy, consent withdrawal, or unacceptable toxicity occurred

HNSCC = head and neck squamous cell carcinoma; PD = progressive disease; R/M= recurrent/metastatic

Selected Ongoing Clinical Trials

- KESTREL (NCT02551159): Phase III comparing durvalumab with or without tremelimumab with EXTREME chemotherapy (carboplatin or cisplatin + 5-FU + cetuximab) for first-line treatment of R/M HNSCC
- EAGLE (NCT02369874): Phase III comparing durvalumab; tremelimumab plus durvalumab; or chemotherapy (cetuximab, taxane, methotrexate, or fluoropyrimidine) for second-line therapy in platinum-resistant R/M HNSCC
- CheckMate 651 (NCT02741570): Phase III comparing nivolumab and ipilimumab vs. EXTREME chemotherapy (Cetuximab + Cisplatin/Carboplatin + Fluorouracil) for first-line therapy of R/M HNSCC
- CheckMate 714 (NCT02823574): Phase II randomized trial comparing nivolumab/ipilimumab with nivolumab for first-line treatment of R/M HNSCC

HNSCC= head and neck squamous cell carcinoma; R/M= recurrent/metastatic

Case Study

DC is a 65-year-old female with stage IVa (T2N2bM0) squamous cell carcinoma of the right tonsil, HPV/P16+

Oncology History:

- Right pharyngectomy and right lymph node dissection followed by adjuvant chemoradiation (RT and weekly cisplatin)
- One year later, developed pulmonary metastases, treated with EXTREME (5-FU, carboplatin, and cetuximab) for 6 cycles followed by cetuximab maintenance for 11 weeks until PD with worsening pulmonary metastases
- For second-line treatment of R/M HNSCC, started pembrolizumab at 200 mg IV over 30 minutes every 3 weeks
- DC tolerated therapy well through the first 3 cycles, except for mild joint pains controlled with prednisone at 10 mg/d

PD = progressive disease; RT = radiation therapy; 5-FU = 5-fluorouracil

Case Study (cont.)

Right lung nodule prior to initiation of pembrolizumab

Case Study (cont.)

DC presents for Cycle 4 pembrolizumab and looks unwell. She reports headaches, dizziness, and fatigue.

What is the most common presentation of hypophysitis?

- A. Central adrenal insufficiency
- B. Central hypothyroidism
- C. Diabetes insipidus
- D. Hypogonadism
- E. Unsure

Hypophysitis: Inflammation of the Pituitary Gland

Results in deficiency of all or some of the pituitary hormones

- Most common presentation of hypophysitis
 - Central adrenal insufficiency
- Symptoms of hypophysitis
 - Headache, fatigue, muscle weakness
 - Constipation
 - Cognitive difficulties (related to thyrotropin axis)
 - Erectile dysfunction/amenorrhea (gonadotropin axis, LH/FSH)
 - Orthostatic hypotension, hypoglycemia/hyponatremia (corticotrophin deficiency, ACTH)

- Workup
 - Evaluation of pituitary gland hormones (ACTH, TSH, FSH, LH, AM cortisol)
 - Electrolytes
 - MRI brain with contrast (pituitary cuts)
- Diagnosis
 - Low ACTH with low cortisol
 - Low or normal TSH with low free T4
 - Hypernatremia and volume depletion with diabetes insipidus
 - Low testosterone or estradiol with low LH and FSH

ACTH = adrenocorticotropic hormone; FSH = follicle-stimulating hormone; LH= luteinizing hormone; MRI = magnetic resonance imaging; TSH= thyroid-stimulating hormone.

ACTH = adrenocorticotropic hormone; FSH = follicle-stimulating hormone; LH = luteinizing hormone; TSH = thyroid-stimulating hormone

Case Study (cont.)

	ACTH (pg/mL)	TSH (ml/UL)	T4 (ng/dL)
Pre	30	1.3	1.1
Post	4	0.39	0.3
Reference	10–50	0.5–5.5	0.89–1.76

Pre-treatment MRI

MRI prior to cycle 4

MRI = magnetic resonance imaging; ACTH = alpha melanocyte-stimulating hormone; TSH = thyroid-stimulating hormone.

Image courtesy Brianna Hoffner, University of Colorado.

Case Study (cont.)

- Autoimmune hypophysitis with central adrenal insufficiency and central hypothyroidism
 - Prednisone at 1mg/kg daily, taper over four weeks
 - Hydrocortisone 20 mg every morning, 10 mg every evening
 - Levothyroxine 75 µg orally daily
 - Referral to endocrinologist
 - Educate patient on need for stress dosing steroids and a medical alert bracelet.
- OK to continue pembrolizumab after symptoms resolve on hormone replacement therapy

Case Study: Tumor Reduction after 7 cycles of Pembrolizumab

Baseline

After 7 cycles of pembrolizumab

Case Study (cont.)

DC presents for Cycle 4 pembrolizumab and looks unwell. She reports headaches, dizziness, and fatigue.

What is the most common presentation of hypophysitis?

- A. Central adrenal insufficiency
- B. Central hypothyroidism
- C. Diabetes insipidus
- D. Hypogonadism
- E. Unsure

Summary

- Immune checkpoint inhibitors are the new standard of care for 2nd line treatment of R/M HNSCC after platinum-based therapy
- Higher response rates and improved survival seen in HPVpositive tumors and tumors with high PD-L1 expression
- Ongoing trials are comparing immune checkpoint inhibitors with EXTREME (SOC chemo) in the 1st line setting for R/M HNSCC

