Adoptive Cell Therapies: Keeping Pace With New and Emerging Therapies

Patricia Mangan, RN, MSN, APRN, BC
Edward Stadtmauer, MD
Abramson Cancer Center
University of Pennsylvania
Learning Objectives

1. Review the approved indications for use of chimeric antigen receptor (CAR) T-cell therapy and studies in hematologic malignancies
2. Gain understanding of the CAR T-cell process
3. Understand the strategies for monitoring and managing emerging toxicities in patients receiving CAR T-cell therapy
4. Describe some of the future directions in the use of this therapy
Adoptive Cellular Therapy: Rationale

• Overcomes limitations of chemotherapy

• Combines advantages of:
 • Antibody therapy (specificity)
 • Cellular therapy (amplified response)
 • Vaccine therapy (memory activity)
Adoptive T cell therapy (three major approaches)

June et al. Sci Trans Med 2015
Anatomy of a Chimeric Antigen Receptor

- Gene transfer technology is used to stably express CARs on T cells, conferring novel antigen specificity.
- CARs combine antigen recognition domain (Anti-CD19, BCMA, CD38, CS1) with intracellular signaling domain.
- Intracellular signaling domain:
 - Same functionality as endogenous T cells.
 - Co-stimulatory endodomain mediates potent anti-tumor effects & promotes persistence (4-1BB, CD28).

CD19: An ideal tumor target

- CD19 is expressed on surface of most B cell malignancies
- CD19 expression is restricted to B cells and their precursors
- CD19 is not expressed on pluripotent bone marrow stem cells
- On target expected SE is B cell aplasia

CAR for B Cell Malignancy:
Autologous T Cells Transduced w/ Anti-CD19 Receptor
Spliced to CD3 zeta and 4-1BB Signaling Domains

Lentiviral vector to deliver construct

CD3-z and 4-1BB signaling domains augments proliferation and survival

Anti-CD3/anti-CD28 mab coated bead stimulation (artificial DC) Expands the cells

Therapeutic Overview

Cellular Immunotherapy with CAR T cells (CTL019)

1. Leukapheresis / Apheresis

2. Antibody-coated beads

3. T-cell activation / Transduction (gene transfer using retroviral transposon or RNA as vector)

4. Lymphodepleting Chemotherapy

5. Modified T-cell infusion

Bead removal

Modified T-cell expansion

Courtesy of Noelle Frye, MD
Successes of CART19 Therapy

<table>
<thead>
<tr>
<th>Ref</th>
<th>Program/CAR</th>
<th>Population</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Lymphoblastic Leukemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maude et al. NEJM 2014</td>
<td>PENN 4-1BB</td>
<td>N=30(ALL) Peds&Adults</td>
<td>CR=90%</td>
</tr>
<tr>
<td>Davila et al. SciTrMed 2014</td>
<td>MSK CD28</td>
<td>N=16 (ALL) Adults</td>
<td>CR=88%</td>
</tr>
<tr>
<td>Lee et al. Lancet 2015</td>
<td>NCI CD28</td>
<td>N=21 (ALL) Peds&AYA</td>
<td>CR=67% Intent to Treat</td>
</tr>
<tr>
<td>Turtle et al. JCI 2016</td>
<td>Seattle 4-1BB</td>
<td>N=30 Adults</td>
<td>CR=93%</td>
</tr>
<tr>
<td>Non-Hodgkin Lymphoma & Chronic Lymphocytic Leukemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kochenderfer JCO 2015</td>
<td>NCI CD28</td>
<td>N=15 (NHL/CLL)</td>
<td>CR=53% PR=27%</td>
</tr>
<tr>
<td>Porter et al. SciTrMed 2014</td>
<td>PENN 4-1BB</td>
<td>N=14(PLL)</td>
<td>CR=29% PR=29%</td>
</tr>
</tbody>
</table>
ALL: Overall Response to CART19

<table>
<thead>
<tr>
<th>Response</th>
<th>N=30</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response</td>
<td>27/30</td>
<td>90%</td>
</tr>
<tr>
<td>No response</td>
<td>3/30</td>
<td>10%</td>
</tr>
</tbody>
</table>

CART19 for Rel/Ref ALL: Survival

Overall Survival

6-month OS: 78% (95% CI: 64,95)

Maude, Frey et al. NEJM 2014;371:1507-1517.
ELIANA: CAR T-cell Therapy in ALL

- Phase II trial of CAR T-cell therapy: tisagenlecleucel
- 79 pediatric/young adult patients (age 3-23) with relapsed or refractory CD19+ B-cell acute lymphoblastic leukemia (ALL)
- Median duration of remission and median overall survival remain unreached

24 month follow up analysis ➔

Survival at a Median Follow-Up of 13.1 Months

<table>
<thead>
<tr>
<th>Months since Tisagenlecleucel Infusion</th>
<th>Event-Free Survival</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 months</td>
<td>66%</td>
<td>76%</td>
</tr>
<tr>
<td>18 months</td>
<td>66%</td>
<td>70%</td>
</tr>
<tr>
<td>24 months</td>
<td>62%</td>
<td>66%</td>
</tr>
</tbody>
</table>
First Gene Therapy Approval: Tisagenlecleucel

- FDA approved for B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse in the treatment of patients up to 25 years of age
- Approval date: August 30, 2017
- Lymphodepletion regimen:
 - Fludarabine 30 mg/m² D-6, D-5, D-4, D-3
 - Cyclophosphamide 500 mg/m² D-6, D-5
- Black box warning for CRS and neurotoxicity
Successes of CART19 Therapy

<table>
<thead>
<tr>
<th>Ref</th>
<th>Program/CAR</th>
<th>Population</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maude et al. NEJM 2014</td>
<td>PENN 4-1BB</td>
<td>N=30 (ALL) Peds&Adults</td>
<td>CR=90%</td>
</tr>
<tr>
<td>Davila et al. SciTrMed 2014</td>
<td>MSK CD28</td>
<td>N=16 (ALL) Adults</td>
<td>CR=88%</td>
</tr>
<tr>
<td>Lee et al. Lancet 2015</td>
<td>NCI CD28</td>
<td>N=21 (ALL) Peds&AYA</td>
<td>CR=67% Intent to Treat</td>
</tr>
<tr>
<td>Turtle et al. JCI 2016</td>
<td>Seattle 4-1BB</td>
<td>N=30 Adults</td>
<td>CR=93%</td>
</tr>
<tr>
<td>Kochenderfer JCO 2015</td>
<td>NCI CD28</td>
<td>N=15 (NHL/CLL)</td>
<td>CR=53% PR=27%</td>
</tr>
<tr>
<td>Porter et al. SciTrMed 2014</td>
<td>PENN 4-1BB</td>
<td>N=14 (CLL)</td>
<td>CR=29% PR=29%</td>
</tr>
</tbody>
</table>
ZUMA-1: Axicabtagene Ciloleucel in DLBCL Survival at a Median of 27.1 Months

Phase II trial of axicabtagene ciloleucel anti-CD19 CAR-T therapy in 101 patients with refractory large B-cell lymphoma

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Progression Free Survival</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>49%</td>
<td>78%</td>
</tr>
<tr>
<td>12 months</td>
<td>44%</td>
<td>59%</td>
</tr>
<tr>
<td>24 months</td>
<td>39%</td>
<td>51%</td>
</tr>
</tbody>
</table>

Median overall survival not reached (95% CI 12.8-NE)

Overall Survival
Progression Free Survival

6 month plateau largely maintained
Only 10 patients progressed beyond 6 month follow up

Axicabtagene Ciloleucel

- FDA approved for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after 2 or more lines of systemic therapy - including DLBCL not otherwise specified, primary mediastinal large B-cell lymphoma, high grade B-cell lymphoma, and DLBCL arising from follicular lymphoma

- Lymphodepletion regimen:
 - Fludarabine 30 mg/m² D-5, D-4, D-3
 - Cyclophosphamide 500 mg/m² D-5, D-4, D-3

- Black box warning for CRS and neurotoxicity
JULIET: Tisagenlecleucel in DLBCL

- Phase II trial of CAR T-cell therapy: tisagenlecleucel in 93 adult patients with relapsed or refractory DLBCL

<table>
<thead>
<tr>
<th>Response Rate (%)</th>
<th>Best Overall (n = 81)</th>
<th>3 Months (n = 81)</th>
<th>6 months (n = 46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (CR + PR)</td>
<td>52</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>CR</td>
<td>40</td>
<td>32</td>
<td>29</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Tisagenlecleucel: Second Indication

• FDA approved for adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy - including DLBCL not otherwise specified, high grade B-cell lymphoma and DLBCL arising from follicular lymphoma

• Lymphodepletion regimen options:
 – Fludarabine 25 mg/m² D-5, D-4, D-3
 – Cyclophosphamide 250 mg/m² D-5, D-4, D-3
 – Bendamustine 90 mg/m² D-4, D-3
 Previously experienced hemorrhagic cystitis with cyclophosphamide or demonstrate resistance to a cyclophosphamide regimen
 – Omit lymphodepletion if WBC ≤ 1x 10⁹/L within one week of CAR T infusion

• Black box warning for CRS and neurotoxicity
CD19 CAR T-Cell Products

<table>
<thead>
<tr>
<th></th>
<th>Axicabtagene Ciloleucel (axi-cel)</th>
<th>Tisagenlecleucel (CTL019)</th>
<th>Lisocabtagene Maraleucel* (liso-cel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US FDA Indication</td>
<td>Adult DLBCL</td>
<td>Ped/young adult ALL</td>
<td>Pending – adult DLBCL</td>
</tr>
<tr>
<td>CAR Type</td>
<td>CD19/CD28/CD3z</td>
<td>CD19/4-1BB/CD3z</td>
<td>CD19/EGFRt/4-1BB/CD3z</td>
</tr>
<tr>
<td>Costimulatory Domain</td>
<td>CD28</td>
<td>4-1BB (CD 137)</td>
<td>4-1BB (CD 137)</td>
</tr>
<tr>
<td>scFv</td>
<td>FMC63</td>
<td>FMC63</td>
<td>FMC63</td>
</tr>
<tr>
<td>Vector</td>
<td>Retrovirus</td>
<td>Lentivirus</td>
<td>Lentivirus</td>
</tr>
<tr>
<td>Defined Cells</td>
<td>No</td>
<td>No</td>
<td>CD4:CD8</td>
</tr>
<tr>
<td>Pivotal Trial</td>
<td>ZUMA-1 (LBCL)</td>
<td>ELIANA (ALL), JULIET (DLBCL)</td>
<td>TRANSCEND (LBCL)</td>
</tr>
</tbody>
</table>

*Not FDA-approved

Summary: CART19 in CD19+ Disease

- 80-90% CR rate in rel/ref ALL & 50% ORR in CLL
 - MRD negative
 - Successful bridge to ALLO SCT
 - Some pts with prolonged remissions from CART19 alone

- CAR T cells can persist for >48 months (Penn experience)
 - Cells remain functional
 - Correlates with remission & B cell aplasia (IVIG replacement)

- CRS is most significant toxicity
 - Responsive to supportive care and anti-cytokine therapy

- Relapses
 - CD19 negative: combination strategies/baseline predictors?
 - CD19 positive: loss of persistence

Designing a Myeloma CAR: Candidate antigen targets

CD19 expression (B cell antigen) → Memory B cell
BCMA expression (plasma cell antigen) → Plasma cell

Rare putative myeloma stem cell population
Dominant clinical myeloma cell population
BCMA (B-cell Maturation Antigen)

- Receptor for BAFF (Blys) and APRIL
- Expressed on plasma cells, some mature B cell subsets, and plasmacytoid DC’s
 - Maintains plasma cell homeostasis
- Highly expressed on myeloma cells
- Soluble BCMA in patient serum

Promotes MM pathogenesis

BCMA CAR T cells – initial studies, refractory pts

<table>
<thead>
<tr>
<th>Trial</th>
<th>n</th>
<th>Conditioning</th>
<th># lines</th>
<th>% hi risk†</th>
<th>ORR</th>
<th>ORR (optimal doses)</th>
<th>VGPR/CR (optimal doses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCI¹</td>
<td>26*</td>
<td>Cy/Flu</td>
<td>7.5</td>
<td>42%</td>
<td>58%</td>
<td>81% (13/16)</td>
<td>63% (10/16)</td>
</tr>
<tr>
<td>Penn²</td>
<td>25</td>
<td>None or Cy</td>
<td>7</td>
<td>76%</td>
<td>48%</td>
<td>64% (7/11)</td>
<td>36% (4/11)</td>
</tr>
<tr>
<td>Bluebird³</td>
<td>43</td>
<td>Cy/Flu</td>
<td>7.5</td>
<td>40%</td>
<td>77% (30/39)</td>
<td>96% (21/22)</td>
<td>86% (19/22)</td>
</tr>
<tr>
<td>Janssen⁴</td>
<td>57</td>
<td>Cy</td>
<td>NA</td>
<td>NA</td>
<td>88%</td>
<td></td>
<td>78%</td>
</tr>
</tbody>
</table>

*2 treated twice; counted separately for response. †FISH +t(4;14), t(14;16), del 17p *excluded high tumor burden in last 14 pts. NR = not reported

<table>
<thead>
<tr>
<th>Trial</th>
<th>n</th>
<th>CRS %</th>
<th>CRS G3-4 %</th>
<th>Neurotox %</th>
<th>Neurotox G3-4 %</th>
<th>Toci</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCI¹</td>
<td>26*</td>
<td>73%</td>
<td>23%</td>
<td>NR</td>
<td>12%</td>
<td>19%</td>
</tr>
<tr>
<td>Penn²</td>
<td>25</td>
<td>88%</td>
<td>32%</td>
<td>32%</td>
<td>12%</td>
<td>28%</td>
</tr>
<tr>
<td>Bluebird³</td>
<td>43</td>
<td>63%</td>
<td>5%</td>
<td>33%</td>
<td>2%</td>
<td>21%</td>
</tr>
<tr>
<td>Janssen⁴</td>
<td>57</td>
<td>76%</td>
<td>7%</td>
<td>42%</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

¹Ali, Blood 2016 and Brudno, J Clin Oncol 2018; ²Cohen, JCI 2019 ³Raje, NEJM 2019 ; ⁴Zhao. ASH 2018
BCMA CAR T cells – lessons from initial studies

• Probably not curative in refractory patients

Median EFS = 31 weeks

Bluebird – dose escalation

DLBCL ph2 Yescarta

1Ali, Blood 2016 and Brudno, J Clin Oncol 2018; 2Cohen, JCI 2019 3Raje, NEJM 2019; 4Zhao. ASH 2018
Interpretation:
Dose matters, Not Fixing everyone

• mPFS of 11.8 months at active doses (≥150 × 10⁶ CAR+ T cells) in 18 subjects in dose escalation phase
• mPFS of 17.7 months in 16 responding subjects who are MRD-negative

Data cutoff: March 29, 2018. Median and 95% CI from Kaplan-Meier estimate. NE, not estimable. *PFS in dose escalation cohort.

Raje, NEJM 2019
Designing Better BCMA CARS

- **Targets**
 - Single vs multiple

- **Constructs**
 - Antigen recognition
 - Stimulatory molecules

- **Vectors**
 - Viral
 - Non-viral approaches

- **Dose**
- **Off switches**
- **Lympho-depletion**
- **Single vs serial infusions**
- **Patient selection**
 - Test for target
 - Early vs heavily pre-treated disease
 - Early vs dysfunctional T-cells
 - Early vs late dysfunctional host
CART-BCMA manufacturing with PI3 kinase inhibition

bb21217: Next-Generation Anti-BCMA CAR T Cell Therapy Product for Multiple Myeloma

- bb21217 uses the same CAR construct design as bb2121
- bb21217 is cultured with PI3 kinase inhibitor, bb007, to enrich for T cells displaying a memory-like phenotype
- CAR T cells enriched for this phenotype may persist and function longer than non-enriched CAR T cells
- Persistence of functional CAR T cells after infusion may be one determinant of duration of response

Shah et al, ASH 2018, #488
CART-BCMA manufacturing with PI3 kinase inhibition

- Toxicities similar to bb2121 (CRS, neurotox)
- ?any difference in memory phenotype, persistence?

Clinical Responses and Duration of Response at the 150 x 10^6 CAR+ T Cell Dose

Shah et al, ASH 2018, #488
Legend Biotech: Phase 1 LCAR-B38M (BCMA CAR T cells)

- Single institution experience (n=57)
- CD3/41BB dual-binding CAR, Cy conditioning, med 3 prior

ORR 88%
CR 68%

CRS 90% (7% Gr 3-4)
Neurotox 2% (Gr 1)

Med PFS = 15 mos?
Transposon-based BCMA CAR construct

- Non-viral gene delivery system, larger cargo capacity
 - Cheaper/faster manufacturing, positive selection gene, suicide gene

P-BCMA-101: Comprised of a High Percentage of Desirable T_{SCM} Cells

We believe T_{SCM} cells in product is the key to increase duration of response and reduce toxicity

- high percentage of T_{SCM} cells is a distinct advantage
- piggyBac™ preferentially transposes in T_{SCM} cells
- T_{SCM} cells engraft and live longer than more differentiated T cells
- T_{SCM} cells can produce potentially unlimited waves of effector cells
- T_{SCM} cells should lead to better duration of response, potential for re-response and efficacy in solid tumors, with more gradual tumor killing producing less toxicity

Gregory et al, ASH 2018, #1012
Transposon-based BCMA CAR construct

Slower in vivo expansion (peak day 14-21)

Cytokine Release Syndrome By Dose Level

Tumor Response in Evaluable Patients by Dose

ORR = 63% (12/19 evaluable)

Gregory et al, ASH 2018, #1012
MSKCC/Juno Vectors in clinical trials

- **MCARH171**
 - Retrovirus
 - No Pre-defined CD4:CD8 ratio

- **JCARH125 (EVOLVE)**
 - Lentivirus
 - 1:1 CD4:CD8 ratio prior to transduction and expansion

- **FCARH143**
 - Lentivirus
 - 1:1 CD4:CD8 ratio after transduction

ASH 2018 abstracts 959, 957 and 1011.
Ph 1/2 JCARH125 (defined CD4:CD8 pre-manufacturing)

- CRS 80% (Gr 3-4 9%)
- Neurotox 25% (Gr 3-4 7%)

Mailankody et al, ASH 2018, #957
Dual BCMA/CD19 Directed CAR Myeloma Trial

- Correlates of favorable clinical outcome
 - peak CTL019 frequency in bone marrow
 - emergence of humoral and cellular immune responses against the stem-cell antigen Sox2.

- Ex-vivo treatment of primary myeloma samples with a combination of CTL019 and BCMA CAR T
 - reliably inhibited myeloma colony formation in vitro while either alone inhibited colony formation inconsistently.

Garfall et al, NEJM 2015, JCI Insight 2018
A combination of humanized anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial (21 pts)

Zhiling Yan*, et al Lancet Oncology 2019
Designing a Myeloma CAR: Candidate antigen targets

• The classics
 • CD138
 • CD38
 • CD56
 • Kappa light chain
 • CD19

♦ The new models:
 • Lewis Y
 • CD44v6
 • MAGE A3
 • NY-ESO-1
 • CS1/SLAMF7
 • BCMA
 • Integrin beta 7
 • FcRH5
 • CD48
 • CD46
 • CD229
 • GPRC5D
CAR T cells for MM in 2018

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Trial Site/Company</th>
<th>Accrual</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCMA</td>
<td>National Cancer Institute</td>
<td>completed (n=26)</td>
</tr>
<tr>
<td>BCMA</td>
<td>University of Pennsylvania / Novartis</td>
<td>completed (n=25)</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multi-site phase 1/ Bluebird</td>
<td>ongoing (n=21 reported)</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multi-site phase 2/ Bluebird</td>
<td>ongoing</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multi-site phase 1 / Bluebird (bb21217 product)</td>
<td>ongoing</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multi-site phase 1/2, Nanjing Legend</td>
<td>ongoing (n=19 reported)</td>
</tr>
<tr>
<td>BCMA</td>
<td>Memorial Sloan-Kettering / Juno</td>
<td>ongoing (n=6 reported)</td>
</tr>
<tr>
<td>BCMA</td>
<td>Fred Hutchinson / Juno</td>
<td>ongoing</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multi-site phase 1/2, Juno</td>
<td>ongoing</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multi-site phase 1, Poseida</td>
<td>ongoing</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multi-site phase 1, Kite</td>
<td>ongoing</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multiple hospital sites in China</td>
<td>ongoing</td>
</tr>
<tr>
<td>BCMA</td>
<td>Multi-site phase 1/2, Autolus Limited</td>
<td>ongoing</td>
</tr>
<tr>
<td>BCMA</td>
<td>Virginia Cancer Specialists, Cartesian Therapeutics</td>
<td>ongoing</td>
</tr>
<tr>
<td>CD19</td>
<td>University of Pennsylvania / Novartis</td>
<td>completed (n=10)</td>
</tr>
<tr>
<td>CD19 + BCMA</td>
<td>University of Pennsylvania / Novartis</td>
<td>open 2018</td>
</tr>
<tr>
<td>CD19 + BCMA</td>
<td>Soochow University, China</td>
<td>ongoing (n=10 reported)</td>
</tr>
<tr>
<td>CD138</td>
<td>General Hospital of PLA, China</td>
<td>completed (n=5)</td>
</tr>
<tr>
<td>CD138</td>
<td>Soochow University, China</td>
<td>ongoing</td>
</tr>
<tr>
<td>Kappa LC</td>
<td>Baylor University</td>
<td>completed (n=7 MM)</td>
</tr>
<tr>
<td>CD38</td>
<td>Multi-site phase 1, Sorrento Therapeutics</td>
<td>ongoing</td>
</tr>
<tr>
<td>CD38</td>
<td>Shenzhen Geno-Immune Medical Institute, China</td>
<td>ongoing</td>
</tr>
<tr>
<td>CD38</td>
<td>n/a</td>
<td>pre-clinical</td>
</tr>
<tr>
<td>SLAMF7/ CS1</td>
<td>n/a</td>
<td>pre-clinical</td>
</tr>
</tbody>
</table>

www.clinicaltrials.gov, March 2018
Cancer Testis Antigens (NY-ESO-1, LAGE-1)

- Expressed in a wide variety of cancers, including multiple myeloma
- Good immunotherapy targets due to limited expression on normal somatic tissue
- Restricted expression decreases the likelihood of ‘on-target off-tumor’ effects
- The frequency of CTA expression tends to increase with cancer stage and recurrence
- NY-ESO-1 and LAGE-1a have been detected at higher levels in advanced multiple myeloma

Ghafouri-Fard et al, Iran J Cancer Prev 2015
van Rhee et al, Blood 2005
Gjerstorff et al, Oncotarget 2015
NY-ESO-1^{c259}TCR : Enhanced Affinity
(PENN, MARYLAND, ADAPTIMMUNE/GSK)

- Lentiviral vector. All domains of the natural TCR are intact, with no added intracellular signaling domains.
- The engineered TCR targets NY-ESO-1 and LAGE-1a, as the same epitope (SLLMWITQC) is present on both CTAs.
- The CDRs (complementary determining regions) are modified to enhance the recognition of the SLLMWITQC peptide in the context of HLA-A*02.
Overview of Study Design

* High dose: 200mg/m²
Conclusions

• NY-ESO-1c259 T-cell therapy in the setting of ASCT has promising efficacy and acceptable safety

• Long-term survival demonstrated in a refractory population

• It is possible to achieve negative MRD with this therapy

• TCR-transduced T-cells persist long term and are not exhausted

• Persisting cells produce multiple cytokines in response to antigen

• Persisting cells include highly differentiated effector subsets and a population of self-renewing stem cell/memory cells

• BUT inconclusive:

• Partnered with MEL 200 ASCT; no long-term progression-free survival

Multiplexed genetic engineering of autologous T cells expressing NY-ESO-1 TCR and CRISPR/Cas9 gene edited to eliminate endogenous TCR and PD-1 (PENN, TMUNITY, PARKER)

- **Overall Rationale:**

 - Increase safety and efficacy by increasing engineered TCR expression and checkpoint inhibition

- **Rationale for endogenous TCRα (TRAC) and TCRβ (TRBC) genes editing:**

 - Reduce endogenous TCR mispairing with exogenous NY-ESO-1 TCR thereby reducing risk of auto-reactivity enhancing recombinant NY-ESO-1 TCR expression on the cell surface for improved potency

- **Rationale PDCD1 gene editing (generate checkpoint resistant T cells)**

 - Gain resistance to PD1 induced suppression thereby improve potency, delay T cell exhaustion
NY-ESO-1 CRISPR (TCR-PD1) Triple Edited T Cell Study Schema (NYCE Cells)

Consent and screen for NY-ESO-1 and HLA-A2: Malignancy

Consent for Study and Enrollment

Day -35 → -4 → -3 → -2 → -1 → +0 → +1 → +3 → +7 → +10 → +14 → +21 → +28

Infusion: NY-ESO-1 TCR-PD1 CRISPR T cells

Disease Evaluation:
- PET Scan
- Biopsy
- Tumor Markers

Monitoring:
- Monthly until 6 mo.
- Quarterly for 2 years

- Solid tumors
 - 250-300 mg/m² flu
 - +25-30 mg/m² cy
 - 1 hr. infusion
 - Days -4, -3, -2

- Myeloma
 - 1.5 mg/m² cy
 - 1 hr. infusion
 - Day -2

Cell and Toxicity Assessment:
- Persistence of cell types
- Cell function assays

Study Product, Dose, Route, Regimen

<table>
<thead>
<tr>
<th>IND 17297</th>
<th>Clinicaltrials.gov NCT03399448</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor: Tmunity and Parker Institute for Cancer Immunotherapy</td>
<td></td>
</tr>
</tbody>
</table>

Autologous T cells transduced with a lentiviral vector to express NY-ESO-1 and electroporated with CRISPR RNA to disrupt expression of endogenous TCRα, TCRβ, and PD-1. A single manufacturing site at UPENN will be used for all subjects enrolled into this study. A single dose of 1×10^6 cells/kg will be given i.v.
Toxicities

Associated with CAR T therapy
But not without toxicity

- **On target toxicities:**
 - Tumor lysis syndrome
 - B cell aplasia
 - Hypogammaglobulinemia

- **Off target toxicities:**
 - Cytokine release syndrome*
 - persistent high fevers, rigors,
 - myalgias, hypotension, hypoxia,
 - neurologic dysfunction, macrophage activation syndrome
 - very high IL6, also IFN-gamma, TNF
 - responds to steroids → but lose CAR T cells
 - tocilizumab (anti-IL6 receptor mAb) can abrogate CRS

- **CNS toxicity**
 - The causative pathophysiology of these neurologic side effects is unknown, though given similar events reported with blinatumomab administration
 - The neurologic toxicity has been reversible in a majority of cases

*Potential Life threatening toxicities

Bonifant et al, Molecular Therapy — Oncolytics (2016) 3, 16011
Cytokine Release Syndrome (CRS)

• Correlates with:
 • CAR-T activation and expansion
 • Dramatic cytokine elevations (very high levels of IL6, IL10, IFNγ, CRP, ferritin)
 • Many responding patients developed a CRS

• Clinical syndrome:
 • Onset: 1-14 days after infusion
 • Duration: 1-10 days
 • Monitor: VS, ferritin level, and CRP level
 • Fevers come first and get very high (105°F/41°C)
 • Myalgias, fatigue, anorexia
 • Capillary leak, hypoxia and hypotension
 • May require ICU support
 • Altered mental status, seizures, DIC

• Self-limited or anti-cytokine intervention
CRS After CAR T Cells: Risk Factors

Disease Characteristics
• Disease Burden (ALL)1-4

Therapeutic Characteristics
• Infusional Dose3,4,6
• Product variance
• LD chemotherapy4

Correlates with Severe Course
• Cytokines and CRP1,5
• Concurrent infectious illness6

1Maude et al. NEJM 2014
2Davila et al. SciTranMed 2014
3Lee et al. TheLancet 2015
4Turtle et al. JCI 2016
5Teachey et al. CancerDisc. 2016
6Frey et al. ASCO 2016
CRS: Cytokine Profiles

• Clinical Laboratory Correlates:
 • Ferritin and CRP

• Investigational Correlates: Direct Impact on Care\(^1\)
 • Cytokine Profiles: IFN\(\gamma\), IL6, IL2R, IL10

\(^1\)Grupp et al. NEJM 2013
CRS After CAR T Cells: Anti-cytokine Management

CRS with high IL6

Tocilizumab for CRS1:

- Humanized monoclonal antibody to IL6-R
- FDA approved adult RA, JIA
- Limited inherent toxicity
- Adopted by most programs
- Effective for most patients

1Grupp et al. NEJM 2013
“The Antidote”: Tocilizumab

- Humanized monoclonal antibody to IL-6
- Can rapidly reverse CRS\(^1\)
- Ensure that 2 doses of tocilizumab are available prior to infusion of CAR-T cells
- Monitor patients closely at least daily for 7 days following infusion for signs and symptoms of CRS
- May be admitted for this close observation then closely as outpatient for 4 weeks following the CAR T infusion.
- Counsel patients to seek immediate medical attention should signs or symptoms of CRS occur at any time
- At the first sign of CRS, institute treatment with supportive care, tocilizumab or tocilizumab and corticosteroids as indicated

CRS With CART19 Therapy

<table>
<thead>
<tr>
<th>Ref</th>
<th>Program/ CAR</th>
<th>Population</th>
<th>Response</th>
<th>CRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Lymphoblastic Leukemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maude et al. NEJM 2014</td>
<td>PENN 4-1BB</td>
<td>N=30 (ALL) Peds&Adults</td>
<td>CR=90%</td>
<td>100% CRS 27% Severe</td>
</tr>
<tr>
<td>Davila et al. SciTrMed 2014</td>
<td>MSK CD28</td>
<td>N=16 (ALL) Adults</td>
<td>CR=88%</td>
<td>43% Severe</td>
</tr>
<tr>
<td>Lee et al. Lancet 2015</td>
<td>NCI CD28</td>
<td>N=21 (ALL) Peds&AYA</td>
<td>CR=67% Intent to Treat</td>
<td>76% CRS 28% Severe</td>
</tr>
<tr>
<td>Turtle et al. JCI 2016</td>
<td>Seattle 4-1BB</td>
<td>N=30 Adults</td>
<td>CR=93%</td>
<td>83% CRS</td>
</tr>
<tr>
<td>Non-Hodgkins Lymphoma & Chronic Lymphocytic Leukemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kochenderfer JCO 2015</td>
<td>NCI CD28</td>
<td>N=15 (NHL/CLL)</td>
<td>CR=53%</td>
<td>27% Severe</td>
</tr>
<tr>
<td>Porter et al. SciTrMed2014</td>
<td>PENN 4-1BB</td>
<td>N=14 (CLL)</td>
<td>CR=29% PR=27%</td>
<td>42% Severe</td>
</tr>
</tbody>
</table>
CRS: Clinical Response to Tocilizumab

![Graph showing Temp over time with a peak during Tocilizumab treatment.](image-url)
CRS: Ferritin Response to Tocilizumab

Tocilizumab: d10

Ferritin

CRS, Pt 04409-09
Mild CRS: Case #1

NHL History
- 59 yo male
- R CHOP x 6 cycles -> CR
- Relapsed 5 mo later
- Salvage with R-ICE x 2 cycles followed by AutoBMT
- Relapsed 3 mo later by radiographic PD

<table>
<thead>
<tr>
<th>Timing</th>
<th>Key events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month-3</td>
<td>Re-induction with R ICE (response)</td>
</tr>
<tr>
<td>Month -2</td>
<td>T cells collected</td>
</tr>
<tr>
<td>Week -1</td>
<td>lymphodepleting chemotherapy (fludarabine/cyclophosphamide)</td>
</tr>
<tr>
<td>Day -1</td>
<td>PET/CT with PR BM blasts, no peripheral blasts</td>
</tr>
</tbody>
</table>

Note: PR = Peripheral Response
Mild CRS: Case #1

- Antibiotics (days 1-7)
- Myalgias (days 2-7)
- Anti-pyretics (days 3-6)
- CTL019 Infusion
- D/C home
Severe CRS: Case #2

ALL History

- 22 yo male ALL
- 1st relapse in maintenance therapy
- Refractory to reinduction

<table>
<thead>
<tr>
<th>Timing</th>
<th>Key notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month -2</td>
<td>T cells collected after failed re-induction</td>
</tr>
<tr>
<td>Month -1</td>
<td>Started hydroxyurea</td>
</tr>
<tr>
<td>Week -1</td>
<td>lymphodepleting chemotherapy (fludarabine/cyclophosphamide)</td>
</tr>
<tr>
<td>Day -1</td>
<td>97% BM blasts, no peripheral blasts</td>
</tr>
</tbody>
</table>
Severe CRS: Case #2

- CTL019 infusion
- Tocilizumab (days 5 and 8)
- Confusion (day 2-11)
- Respiratory support (days 3-10)
- High-dose vasopressors (days 5-9)
- High-dose steroids (days 7-11)
- Transfusion support (days 2-15)
- FFP (days 2 and 8)
- Cryoprecipitate (days 10-15)
- Rasburicase (Day 9)
ASBMT Consensus Grading for CRS Associated with Immune Effector Cells (IEC)

<table>
<thead>
<tr>
<th>CRS Parameter</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever*</td>
<td>$T_m > 100.4^\circ F$</td>
<td>$T_m > 100.4^\circ F$</td>
<td>$T_m > 100.4^\circ F$</td>
<td>$T_m > 100.4^\circ F$</td>
</tr>
<tr>
<td>With either:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>None</td>
<td>Responsive to fluids</td>
<td>Requiring 1 vasopressor (w/ or w/o vasopressin)</td>
<td>Requiring multiple vasopressors (excluding vasopressin)</td>
</tr>
<tr>
<td>And/or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoxia</td>
<td>None</td>
<td>Low-flow nasal cannula or blow-by</td>
<td>High-flow nasal cannula, face mask, non-rebreather mask, or Venturi mask</td>
<td>Requiring positive pressure (CPAP, BiPAP Intubation and mechanical ventilation)</td>
</tr>
</tbody>
</table>

- Organ toxicities associated with CRS may be graded according to CTCAE v5.0, but they do not influence CRS grading.
- Low-flow nasal cannula: O2 delivered at <6 L/minute.
CRS Management

- Hypotension SBP < 90 mm Hg refractory to IVF challenge and requiring vasopressors OR
- Respiratory distress/hypoxia requiring ventilatory support OR
- Acute coronary syndrome with positive troponin and/or ECG changes OR
- Seizure, clinically suspected and/or documented on EEGC

Tocilizumab 8 mg/kg IV once

- Worsening CRS within 12 hrs
 - Increasing vasopressors dose OR
 - Increasing ventilatory support OR
 - Persistent seizure activity

- No clinical improvement ≥ 24 hrs

Dexamethasone 10 mg IV Q6H

- Taper as clinically indicated

Clinical improvement < 24 hrs
- Decreasing vasopressor dose OR
- Decreasing ventilatory support OR
- No further seizure activity

Observe

- Worsening CRS
 - Increasing vasopressors OR
 - Increasing ventilatory support OR
 - New seizure

Park. ASCO 2016. Abstr 7003
CAR T cells for ALL: Optimizing Risk: Benefit Ratio

- **Delivery of CAR T cells:**
 - Dose adjustment based on disease burden
 - Fractionated dosing: Real time dose modification by CRS symptoms

- **CAR T modifications:**
 - Create CARTs with targets for destruction:
 (CD20, EGFR, HSV thymidine kinase, caspase 9)
 - “On switch”: additional signal (drug) to be activated

1. Gardner et al. ASH2016-586
2. NCT02906371(CHOP)
3. Frey et al. ASCO. 2016
4. DiStasi et al, NEJM. 2011
5. Casucci et al, Molecular Therapy. 2013
Neurotoxicity
Second Most Common Toxicity Associated with CAR T-cell Therapy

• Range of Symptoms
diminished attention, language disturbance, confusion, disorientation, agitation, aphasia, tremors, seizures, encephalopathy

• Pathophysiology
 – Unclear; however is likely related to T-cell
 – Passive diffusion of cytokines
 – Expansion of CAR T-cells into CNS

• Predictors
 – High Disease Burden
 – High IL6 on Day1

• Neurotoxicity and CRS follow a different course of onset and resolution
• Onset varies and can be biphasic:
 – Early – Symptoms occur concurrently with CRS symptoms (~within first 5 days)
 – Late – Begins after CRS symptoms have resolved
 – Delayed – Most neurotoxicity events (88-98%) occur within 8 weeks after cell infusion (seizures, episodes of confusion)
Immune Effector Cell-Associated Encephalopathy (ICE) Score

<table>
<thead>
<tr>
<th>ICE Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 10:</td>
<td>No impairment</td>
</tr>
<tr>
<td>Score 7-9:</td>
<td>Grade 1</td>
</tr>
<tr>
<td>Score 3-6:</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Score 0-2:</td>
<td>Grade 3</td>
</tr>
</tbody>
</table>

Combine with other ICANS assessments for final grade

- How many of the following is the patient oriented to: year, month, city, hospital
- Identify 3 objects. How many can the patient name?
- Can follow commands
- Can write a standard sentence
- Can count backwards from 100 by 10

Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)

<table>
<thead>
<tr>
<th>Neurotoxicity Domain</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE SCORE</td>
<td>7-9</td>
<td>3-6</td>
<td>0-2</td>
<td>0 (patient is unarousable and unable to perform ICE)</td>
</tr>
<tr>
<td>Depressed LOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>attributed to no other cause</td>
<td>Awakens spontaneously</td>
<td>Awakens to voice</td>
<td>Awakens only to tactile stimulus</td>
<td>Patient is unarousable or requires vigorous or repetitive tactile stimuli to arouse. Stupor or coma</td>
</tr>
<tr>
<td>Seizure</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor findings</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Raised ICP / Cerebral edema</td>
<td>N/A</td>
<td>N/A</td>
<td>Focal/local edema on neuroimaging</td>
<td>Diffuse cerebral edema on neuroimaging; Decerebrate or decorticate posturing; or Cranial nerve VI palsy; or Papilledema; or Cushing’s triad</td>
</tr>
</tbody>
</table>

Managing Neurotoxicity of CAR T-Cell Therapy

- **Tocilizumab** might reverse neurotoxicity during first phase but not second phase
- **Corticosteroids** may be used to manage neurotoxicity if tocilizumab is not effective[1]
- **Seizure prophylaxis**

Management of CRES

CAR-Related Encephalopathy Syndrome

- **Grade 1/2**
 - Requires vigilant supportive care
 - Neuro consult with diagnostic imaging
 - Daily monitoring with EEGs
 - Consider tocilizumab
 - **Grade 2:** tocilizumab/siltuximab or high-dose corticosteroids and consider ICU transfer

- **Grade 3/4**
 - Vigilant supportive care and neuro workup
 - ICU transfer
 - Consider tocilizumab/siltuximab
 - Corticosteroid taper for worsening
 - **Grade 4:** ICU monitoring and consider mechanical ventilation
 - Anakinra (IL1 inhibitor)

Adapted from MD Anderson Cancer Center. Chimeric Antigen Receptor (CAR) Cell Therapy Toxicity Assessment and Management - Adult.
Neurotoxicity of CART19 Therapy

Acute Lymphoblastic Leukemia

<table>
<thead>
<tr>
<th>Ref</th>
<th>Program CAR</th>
<th>Population</th>
<th>Response</th>
<th>CRS</th>
<th>Neurotoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maude et al. NEJM 2014</td>
<td>PENN 4-1BB</td>
<td>N=30(ALL) Peds&Adults</td>
<td>CR=90%</td>
<td>100% CRS 27% Severe</td>
<td>43% Total Encephalopathy Aphasia Seizure (1)</td>
</tr>
<tr>
<td>Davila et al. SciTrMed 2014</td>
<td>MSK CD28</td>
<td>N=16 (ALL) Adults</td>
<td>CR=88%</td>
<td>43% Severe</td>
<td>25% Gr3-4 Encephalopathy Seizure</td>
</tr>
<tr>
<td>Lee et al. Lancet 2015</td>
<td>NCI CD28</td>
<td>N=21 (ALL) Peds&AYA</td>
<td>CR=67% Intent to Treat</td>
<td>76% CRS 28% Severe</td>
<td>29% Total hallucinations Dysphasia encephalopathy</td>
</tr>
<tr>
<td>Turtle et al. JCI 2016</td>
<td>Seattle 4-1BB</td>
<td>N=30 Adults</td>
<td>CR=93%</td>
<td>83% CRS</td>
<td>50% Severe</td>
</tr>
</tbody>
</table>

Non-Hodgkins Lymphoma & Chronic Lymphocytic Leukemia

<table>
<thead>
<tr>
<th>Ref</th>
<th>Program CAR</th>
<th>Population</th>
<th>Response</th>
<th>CRS</th>
<th>Neurotoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kochenderfe JCO 2015</td>
<td>NCI CD28</td>
<td>N=15 (NHL/CLL)</td>
<td>CR=53% PR=27%</td>
<td>27% Severe</td>
<td>40% Total Encephalopathy Aphasia, R facial par</td>
</tr>
<tr>
<td>Porter et al. SciTrM2015</td>
<td>PENN 4-1BB</td>
<td>N=14(CLL)</td>
<td>CR=29% PR=29%</td>
<td>42% Severe</td>
<td>43% Total 1/14 Grade 4</td>
</tr>
</tbody>
</table>
Toxicities in BCMA Trials for Myeloma

<table>
<thead>
<tr>
<th>Trial</th>
<th>n</th>
<th>CRS %</th>
<th>CRS G3-4 %</th>
<th>Neurotox %</th>
<th>Neurotox G3-4 %</th>
<th>Tocilizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCI¹</td>
<td>26*</td>
<td>73%</td>
<td>23%</td>
<td>NR</td>
<td>12%</td>
<td>19%</td>
</tr>
<tr>
<td>Penn²</td>
<td>25</td>
<td>88%</td>
<td>32%</td>
<td>32%</td>
<td>12%</td>
<td>28%</td>
</tr>
<tr>
<td>Bluebird³</td>
<td>43</td>
<td>63%</td>
<td>5%</td>
<td>33%</td>
<td>2%</td>
<td>21%</td>
</tr>
<tr>
<td>Janssen⁴</td>
<td>57</td>
<td>76%</td>
<td>7%</td>
<td>42%</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

¹Ali, Blood 2016 and Brudno, J Clin Oncol 2018; ²Cohen, JCI 2019 ³Raje, NEJM 2019; ⁴Zhao. ASH 2018
Premedication and Prophylaxis Considerations

- Cell-infusion pre-medications: acetaminophen and diphenhydramine. Use of uric acid lowering medications to prevent TLC.
- No steroids from the start of lymphodepleting chemotherapy.
- Infection prophylaxis:
 - Antiviral
 - Antifungal and fluoroquinolone during neutropenic period
 - PJP prophylaxis
- Seizure prophylaxis:
 - Examples: levetiracetam 500-750 mg PO BID day -1/0 to day 30.
B-cell Aplasia and Hypogammaglobulinemia

- On target expected SE is B cell aplasia
- Correlates with CART persistence
- Successfully managed with IVIG replacement
- No excessive or frequent infections

Additional Toxicities Associated with CAR T-cells

• Tumor lysis syndrome
 – Use of uric acid lowering meds with high burden of disease
• Infections (opportunistic)
 – IVIg
 – Antiviral, Antibacterial, Antifungal
• Prolonged cytopenias
 – Continued monitoring of CBC
 – Growth factor as needed
Cellular Therapy Coordination

- Logistical Navigation
- Financial Approval
- REMS
- Patient Assessment/Selection
- Patient Education
- Multi-disciplinary Coordination
What’s Next in Cellular Immunotherapy?

- Constructs
 - Antigen recognition
 - Stimulatory molecules
- Vectors
 - Viral
 - Non-viral approaches
- Dose
- Off switches
 - Suicide genes/safety domains
- Lympho-depletion
- Single vs serial infusions
- Patient selection
 - Test for target
 - Early vs heavily pretreated
- Toxicities
 - Timing of tocilizumab
- Gene editing
 - “Universal” or “Off the Shelf” CAR T cells
 - CRISPR gene edited NY-ESO1 TCR T cells
- Dual CARs
- Combinations with
 - IMIDs
 - Checkpoint inhibitors
- Use in other cancers

1 Grupp et al. ASHAbst221
2 Chang et al ASH Abst 587
3 Shah et al: ASHAbst 650
4 Neelapu et al. LBAbst 6
Clinical Pearls

• CAR T therapy is an effective form of cellular immunotherapy for ALL, NHL and multiple myeloma.
• It is multi-step process and requires great deal of coordination of care.
• There are unique toxicities associated with this therapy, which vary by product and disease being treated.
• We now are more comfortable with earlier intervention without loss of effectiveness or persistence of these cells
• This is just the beginning of adoptive immunotherapy!!
 • For use in other malignancies; with less toxicities and more persistence and availability.
More Questions?

Come see us in the Skybridge Lobby near Registration from 8:15 to 8:45 am tomorrow.
This has been a SMARTIE presentation.

To access your post-session questions, you can:
- Click on the link that was sent to you via email
- Visit the SMARTIE station
- Go to jadprolive.com/smartie2019